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Abstract

When we observe a point cloud in the Euclidean space, the persistent homology1

of the upper level sets filtration of the density is one of the most important tools2

to understand topological features of the data generating distribution. The per-3

sistent homology of KDEs (kernel density estimators) for the density function is4

a natural way to estimate the target quantity. In practice, however, calculating5

the persistent homology of KDEs on d-dimensional Euclidean spaces requires a6

grid-approximation for the ambient space, which is computationally expensive.7

In this paper, we will consider the persistent homology of KDE filtrations on8

Rips complexes as suggested by Bobrowski et al. [2014]. We will describe a9

novel methodology to construct an asymptotic confidence set for the corresponding10

persistence diagram by using the interleaving distance and the bootstrap. Unlike11

existing procedures, our method does not heavily rely on grid-approximations and12

scales to higher dimensions.13

1 Introduction14

When we observe data from a distribution P , the upper level sets DL := {p ≥ L} of the density15

function p reveal important topological features of the data generating distribution. For instance,16

density-based clustering methods [Hartigan, 1975, 1981, Cadre, 2006, Rinaldo and Wasserman, 2010]17

use the information about connected components of a level set to group data points in the hope that18

points in the same connected component share common characteristics. Rather than choosing a fixed19

level, a cluster tree [Kim et al., 2016, Eldridge et al., 2015, Balakrishnan et al., 2013, Chaudhuri and20

Dasgupta, 2010] summarizes the hierarchy of high-density clusters at all levels simultaneously.21

We can investigate topological features of level sets by their corresponding homology groups. For22

example, the 0-th homology group of a level set contains information about connected components in23

the level set. By using higher order homology groups, we can further characterize each connected24

components. For instance, the rank of the 1-st homology group of each connected component counts25

the number of one-dimensional holes.26

Since different level sets could show different aspects of the data generating distribution, analyzing a27

fixed level set might be not enough to understand the overall shape of the distribution. Alternatively,28

as cluster trees show clusters at all levels, we can investigate changes in shapes by looking at all29

possible level sets simultaneously,30

{DL}L∈R. (1)

Note that DL1
⊂ DL2

for any L1 ≥ L2. Thus (1) is called the level sets filtration of the density31

function.32

The persistent homology [Edelsbrunner and Harer, 2010, 2008, Zomorodian and Carlsson, 2005]33

quantifies topological features at multiple scales by computing a filtration of topological spaces. The34
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persistent homology captures changes of homologies in filtrations simultaneously, see [Fasy et al.,35

2014, Bobrowski et al., 2014, Phillips et al., 2013, Chung et al., 2009, Bubenik, 2015].36

Since the density function is unknown, the persistent homology of the density function needs to be37

estimated. One approach, as in Fasy et al. [2014], is to replace the level sets of unknown density38

function by level sets of kernel density estimator (KDE) computed on a grid of points. Another39

approach, as in Bobrowski et al. [2014], is to use a different approximating filtration rather than using40

the level sets of KDE.41

Both methods have pros and cons. The first approach in Fasy et al. [2014] yields more precise42

estimation if we use a sufficiently fine grid approximation to calculate the persistent homology of43

KDEs. The first approach also has several well-studied ways of computing confidence sets which44

can be used to distinguish signal vs noise topological features, due to the well-known theoretical45

behavior of the KDE. However, a fine grid approximation could be computational intractable when46

the ambient space has large dimension. In contrast, the second approach in Bobrowski et al. [2014] is47

computationally more efficient, in particular in higher dimension, because the persistent homology48

is calculated on the data points only and it does not require a grid-approximation of the ambient49

space. This feature of the second approach makes it possible to capture heterogeneous topological50

features efficiently, and makes it easy to apply the method to more general settings. However, the51

asymptotic behavior of the approximating filtration is more complicated, and hence confidence sets52

for Bobrowski et al. [2014] are not yet well-studied.53

The goal of this paper is to use the estimator of the persistent homology of KDE filtrations on Rips54

complexes proposed by Bobrowski et al. [2014] in order to construct a bootstrap-based confidence set55

for the corresponding persistence diagram. Our method does not heavily rely on grid-approximations56

and scales to higher dimensions.57

1.1 Notation58

Throughout the paper, we let X = Rd. We denote by B(x, r) the closed ball of radius r > 0 and59

center x ∈ Rd. Let Xn := {X1, . . . , Xn} ⊂ X be the observed data. For a function f : X→ R and60

a value L ∈ R, we let XfL := {x ∈ X : f(x) ≥ L} be the upper level set of f at level L.61

2 Background62

This section is a brief introduction to homology and persistent homology. We mainly follow Fasy et al.63

[2014] and Bobrowski et al. [2014]. We refer to Hatcher [2002] for a comprehensive explanation of64

homology, and to Edelsbrunner and Harer [2010] for theory and computation of persistent homology.65

2.1 Homology of an abstract simplicial complex K66

Definition 1. Let V := {v0, v1, . . . , vn} be a finite vertex set. An abstract simplicial complex K on67

V is a collection of subsets of V such that68

1. ∅ ∈ K69

2. {v} ∈ K for ∀v ∈ V70

3. If σ ∈ K and τ ⊂ σ then τ ⊂ K71

An element σ of K is called a simplex or a face. For each σ ∈ K, the dimension of σ is defined by72

dimσ := |σ| − 1, and the dimension of K is defined by dimK := max{dimσ : σ ∈ K}.73

74

Definition 2. A p-chain of K is a formal sum
∑

σ∈Kp
cσσ, where cσ ∈ Z2, Kp is the collection of75

dimension p simplices.76

Definition 3. The set of p-chains of a simplicial complex K form a p-chain group

Cp(K) :=
{
c1σ1 + · · ·+ cnpσnp : ci ∈ Z2, σi ∈ Kp, np = |Kp|

}
2



Definition 4. A boundary map ∂p : Cp(K)→ Cp−1(K) is defined by

∂p(σ) = ∂p[v0, v1, . . . , vp] :=

p∑
i=0

[v0, . . . , v̂i, . . . , vp] and extend to Cp(K) linearly

where [v0, . . . , v̂i, . . . , vp] is a (p− 1)-dimensional simplex obtained by removing vi in σ.77

We call ∂p(C) (∈ Cp−1(K)) a boundary of C (∈ Cp(K)), and say C is cycle if ∂p(C) = 0.78

79

Definition 5. Let Zp(K) := ker ∂p ⊂ Cp(K) be the p-cycle group and Bp(K) := Im ∂p+1 ⊂
Cp(K) be the p-boundary group. Now, the p-th homology group is defined by

Hp(K) := Zp(K)/Bp(K)

Note that it is well defined since ∂p∂p+1 = 0, and thus Bp(K) ⊂ Zp(K). Each homology class80

γ ∈ Hp(K) corresponds to a p-dimensional cycle. Finally, we define the p-th Betti number by81

βp := rk(Hp(K)). For instance, β0 is the number of connected component of K, β1 is the number82

of one-dimensional holes in K, and β2 is the number of two-dimensional holes in K.83

2.2 Computing homology from point clouds84

In many applications, we cannot observe the topological space directly but only obtain (noisy) point85

clouds from it. Let r = (r1, . . . , rn) ∈ Rn with r1, . . . , rn > 0, then one natural way to recover the86

topological space of interest is to make a union of ri-balls centered at the data points X1, . . . , Xn,87

defined as88
n⋃
i=1

B(Xi, ri). (2)

The corresponding simplicial complex is the Čech complex.89

Definition 6. Let Xn ⊂ X and r ∈ Rn with r1, . . . , rn > 0. The Čech complex is the set of simplices90

with σ with vertices Xn1
, . . . , Xnk ∈ Xn such that91

Čech(Xn, r) :=

{
σ = [Xn1

, . . . , Xnk ] :

k⋂
i=1

B(Xni , rni) 6= ∅

}

The homology of the union of balls in (2) can be computed by the homology of the Čech complex by92

the following Nerve Theorem.93

Lemma 1 (Nerve Theorem). The Čech complex Čech(Xn, r) is homotopy equivalent to the union of94

balls
n⋃
i=1

B(Xi, ri).95

Computing the Čech complex requires checking whether intersections of balls B(Xni , rni) are empty96

or not. To save on computation time, we may instead check pairwise distances only and add 2- and97

higher-dimensional simplices whenever we can. This leads to the Vietoris-Rips complex.98

Definition 7. The Vietoris-Rips complex R(Xn, r) is defined by99

R(Xn, r) :=
{
σ = [Xn1 , . . . , Xnk ] : ‖Xni −Xnj‖ ≤ rni + rnj ,∀i 6= j

}
Note that the Čech complex and Vietoris-Rips complex have following interleaving inclusion rela-100

tionship101

Čech(Xn, r) ⊂ R(Xn, r) ⊂ Čech(Xn, 2r)

In particular, when ri’s are all the same, then the constant 2 can be tightened to
√

2 :102

Čech(Xn, r) ⊂ R(Xn, r) ⊂ Čech(Xn,
√

2r)
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2.3 Persistent homology103

Choosing a suitable r in R(Xn, r) is difficult. Instead of choosing a fixed r, we can use several104

R(Xn, r) simultaneously by using the filtration105

∅ = R(Xn, r(0)) ⊂ R(Xn, r(1)) ⊂ · · · ⊂ R(Xn, r(m)) = R(Xn,∞)

In general, a filtration is a nested sequence of topological spaces.

∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

For instance, in many statistical applications, we are interested in the filtration of upper level sets of a106

density function f : X→ R where Xi := XfLi with L0 ≥ L1 ≥ · · · ≥ Lm. Inclusions in a filtration107

naturally induce maps on the corresponding homology groups :108

0 = Hp(X0)→ Hp(X1)→ · · · ,→ Hp(Xn) = Hp(X) (3)

and also induce a natural group homomorphism ips,t : Hp(Xs) → Hp(Xt). In many cases, we109

can successfully approximate the filtration in (3) by using a suitable filtration of the corresponding110

Vietoris-Rips complex in Definition 7.111

The persistent homology tracks when topological features are born and die. Formally, a homology112

class γ ∈ Hp(Xs) is said to be born at Xs if γ is not in the image of ips−1,s. The same class γ born113

at Xs dies going into Xt if t is the smallest index such that the class γ is supported in the image of114

ips−1,t.115

Definition 8. The persistent homology is the finite multi-set of pairs of births and deaths of homology116

classes. Each pair of birth at s and death at t of homology class γ can be visualized in the p-th117

persistence diagram as a point (s, t).118

2.4 Stability Theorem for functions119

Let f, g : X → R be two functions. The stability theorem asserts that if f and g are close to each120

other, then their corresponding persistent homologies PH∗(f) and PH∗(g) are also close. We first121

define the distance between two persistent homologies by using the bottleneck distance.122

Definition 9. Let X be a filtration. The k-th persistence diagram of X , denoted by Dgmk(X ) is the
set of all pairs (b, d) of birth-death times of features in PHk(X ). The bottleneck distance between
the persistent homology of the filtrations, X ,Y is defined by

dB(PHk(X ),PHk(Y)) = inf
γ∈Γ

sup
p∈Dgmk(X )

‖p− γ(p)‖∞,

where the set Γ consists of all the bijections γ : Dgmk(X ) ∪Diag → Dgmk(Y), and Diag is the123

diagonal line {(x, x) : x ∈ R} ⊂ R2.124

We impose a regularity condition for the functions f and g, which is tameness.125

Definition 10. Let f : X→ R. Then f is tame if Hk(XL) is of finite rank for all k ∈ N ∪ {0} and126

L ∈ R.127

For two tame functions f and g, their bottleneck distance is bounded by their `∞ distance, which is128

known as the stability theorem.129

Theorem 2 (Stability Theorem). (Edelsbrunner and Harer [2010], Chazal et al. [2009]) For two130

tame functions f, g : X→ R,131

dB(PH∗(f),PH∗(g)) ≤ ‖f − g‖∞.

The stability theorem bounds the difference between persistent homologies generated from sublevel132

sets or superlevel sets of functions. When it comes to comparing two persistent homologies that are133

not necessarily from level sets of functions, we need the Stability Theorem in more general algebraic134

settings. In Appendix A, we define persistence module, which is an algebraic abstraction of the135

persistent homology, and then state the Stability Theorems on persistence modules.136
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3 Definitions and Statistical model137

Let X = {X1, . . . , Xn} be an i.i.d. sample from a distribution P with Lebesgue density p. We138

assume that the density function p satisfy assumption 1:139

Assumption 1. Let p : Rd → R be a density function of P with the following conditions:140

1. supp(p) is bounded.141

2. p is tame (see Definition 10).142

3. pmax := sup
x∈X

p(x) < +∞.143

For estimating the density p, we use the kernel density estimator (KDE), which smooths out the144

empirical measure by a kernel function K : Rd → R. Let the kernel function K satisfy Assumption145

2:146

Assumption 2. The kernel function K : Rd → R is a nonnegative function with the following147

conditions:148

1. supp(K) ⊂ B(0, 1),149

2.
∫
K(x)dx = 1.150

Then for h > 0, the kernel density estimator is defined as151

p̂h(x) :=
1

nhd

n∑
i=1

K

(
x−Xi

h

)
.

Let ph : Rd → R be the pointwise average of the kernel density estimator, i.e. ph(x) := E[p̂h(x)].152

Our target of inference is the persistent homology of ph, denoted as PH∗(ph). More formally, Let153

the upper level set of ph be154

DL :=
{
x ∈ Rd : ph(x) ≥ L

}
. (4)

Then PH∗(ph) is the persistent homology of the filtration155

{DL}L∈R . (5)

4 Confidence set for persistent homology for filtration on Rips complex156

In this section, we build a confidence set of the persistent homology PH∗(ph) of the density level set157

filtration. We first consider the general form of a valid asymptotic confidence set and its equivalent158

condition, and then we consider two implementations using this general form.159

A confidence set of the persistent homology PH∗(ph) is a random set of persistent homologies that160

contains PH∗(ph) with some probability. Specifically, for given α ∈ (0, 1), a valid 1 − α level161

asymptotic confidence set of PH∗(ph) is a random set Ĉα satisfying162

lim sup
n→∞

P (PH∗(ph) ∈ Ĉα) ≥ 1− α.

We construct the confidence set Ĉα by considering an appropriate estimator ̂PH∗(ph) for the persistent163

homology PH∗(ph), and then consider all persistent homologies within cn for some cn > 0. Hence164

the confidence set becomes165

Ĉα =
{
P : dB

(
P, ̂PH∗(ph)

)
≤ cn

}
,

where both ̂PH∗(ph) and radius cn are functions of X1, . . . , Xn. Then note that PH∗(ph) ∈ Ĉα166

holds if and only if167

dB

(
̂PH∗(ph),PH∗(ph)

)
≤ cn.

Hence Ĉα is a valid 1− α asymptotic confidence set if and only if168

lim sup
n→∞

P
(
dB

(
̂PH∗(ph),PH∗(ph)

)
≤ cn

)
≥ 1− α.
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We first construct the persistent homology estimator by using a kernel density estimator as proposed169

by Bobrowski et al. [2014]. Then we further approximate the estimator by considering Čech and Rips170

complexes, and then build the confidence sets from them.171

First, we estimate the persistent homology of ph by building up the approximating filtration where172

each upper level set is replaced by the union of closed balls around the sample points of high density.173

Formally, for h > 0 and r = (r1, . . . , rn) ∈ Rn with r1, . . . , rn > 0, we define the upper level set174

estimator D̂L(r) as175

D̂L(r) :=


⋃
i∈ÎL

B(Xi, ri), ÎL = {i ∈ [n] : p̂h(Xi) ≥ L} if L > 0

Rd if L ≤ 0.
(6)

Then we build up the approximating filtration as176 {
D̂L(r)

}
L∈R

, (7)

and let PH∗(p̂h, r) be the corresponding persistent homology. Then we can use PH∗(p̂h, r) as the177

persistent homology estimator ̂PH∗(ph), due to the following stability theorem.178

Theorem 3. Suppose Assumption 1 holds for the density function p and Assumption 2 holds for the179

kernel function K. For any given h > 0 and r = (r1, . . . , rn) ∈ Rn with ri ≥ h, ∀i,180

dB (PH∗(p̂h, r),PH∗(ph)) ≤ ‖p̂h − ph‖∞ + ĉr, (8)

where181

ĉr := max
i

sup
‖x−Xi‖≤ri

|p̂h(x)− p̂h(Xi)|. (9)

We estimate the distance ‖p̂h − ph‖∞ by using the bootstrap. First, we generate B bootstrap samples182

{X̃1
1 , . . . , X̃

1
n}, . . . , {X̃B

1 , . . . , X̃
B
n }, by sampling with replacement from the original sample. On183

each bootstrap sample, let Ti =
√
nhd‖p̂h−p̂ih‖∞, where p̂ih is the kernel density estimator computed184

on ith bootstrap samples {X̃i
1, . . . , X̃

i
n}. Let the bootstrap quantile ẑα as185

ẑα = inf

{
z :

1

B

B∑
i=1

I(Ti > z) ≤ α

}
. (10)

Then we define our confidence set as186

Ĉα :=

{
P : dB (P,PH∗(p̂h, r)) ≤

ẑα√
nhd

+ ĉr

}
. (11)

This confidence set is a valid asymptotic 1− α confidence set, as in the following theorem:187

Theorem 4. The confidence set Ĉα in (11) is asymptotically valid and satisfies188

P
(
dB (PH∗(p̂h, r),PH∗(ph)) ≤ ẑα√

nhd
+ ĉr

)
≥ 1− α+O

(√
1

n

)
. (12)

Note that this is a valid confidence set, but computing PH∗(p̂h, r) exactly is infeasible. Hence we189

further approximate this by considering the weighted Čech complex and the weighted Rips complex.190

For L, h > 0 and r ∈ Rn with r1, . . . , rn > 0, let the samples of high density as191

X̂
L

n :=

{
{Xi : p̂h(Xi) ≥ L; 1 ≤ i ≤ n} , L > 0,

Rd, L ≤ 0.

Consider the weighted Čech complex Čech(X̂
L

n , r) and the weighted Rips complex R(X̂
L

n , r).192

Let PHCech
∗ (p̂h, r) and PHR

∗ (p̂h, r) be the corresponding persistent homology of the filtrations193 {
Čech(X̂

L

n , r)
}
L∈R

and
{
R(X̂

L

n , r)
}
L∈R

, respectively. Then we have the following stability194

theorem:195
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Theorem 5. Suppose Assumption 1 holds for the density function p and Assumption 2 holds for the196

kernel function K. For any given h > 0 and r = (r1, . . . , rn) ∈ Rn with ri ≥ h, ∀i,197

dB

(
PHCech
∗ (p̂h, r),PH∗(ph)

)
≤ ‖p̂h − ph‖∞ + ĉr, (13)

and198

dB
(
PHR
∗ (p̂h, r),PH∗(ph)

)
≤ ‖p̂h − ph‖∞ + ĉ2r. (14)

As before, we estimate the distance ‖p̂h − ph‖∞ by using the bootstrap, and define our confidence199

sets as200

ĈCechα :=

{
P : dB

(
P,PHCech

∗ (p̂h, r)
)
≤ ẑα√

nhd
+ ĉr

}
, (15)

ĈRα :=

{
P : dB

(
P,PHR

∗ (p̂h, r)
)
≤ ẑα√

nhd
+ ĉ2r

}
. (16)

These confidence sets are valid asymptotic 1− α confidence sets, as in the following theorem:201

Theorem 6. The confidence set ĈCechα in (15) is asymptotically valid and satisfies202

P
(
dB

(
PHCech
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉr

)
≥ 1− α+O

(√
1

n

)
. (17)

Similarly, the confidence set ĈRipsα in (16) is asymptotically valid and satisfies203

P
(
dB
(
PHR
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉ2r

)
≥ 1− α+O

(√
1

n

)
. (18)

Remark 7. If we set ri = r, ∀i ∈ [n], we can replace ĉ2r with ĉ√2r.204

5 Examples205

To illustrate how one can use the methods in the previous section to do statistical inference on206

topological features of data generating distributions, we calculate persistence diagrams of PHR
∗ (p̂h, r)207

and their confidence sets on toy examples. We make 2 synthetic data sets with circular shapes208

which are described in the left side of Figure 1 and 2. The right side shows persistence diagrams of209

PHR
∗ (p̂h, r). Each black dot indicates the birth and death of each 0-th homology class corresponding210

to each connected component. Similarly, each red triangle represents the birth and death of each 1-st211

homology class related to each one-dimensional hole. For all diagrams, the shaded banded regions212

correspond to 90% confidence sets in the sense that any homology class contained in the bands cannot213

be distinguished from the diagonal lines within the confidence sets. In other words, homology classes214

outside of band illustrate significant topological features of the underlying distribution. We refer to215

Fasy et al. [2014] for the detailed interpretation. In Figure 1 (c) and 2 (c), we can check there are216

a black dot and a red triangle outside of band which coincide to the fact that most of the data are217

distributed around a circle with a hole.218

Persistence diagrams of PHR
∗ (p̂h, r) depend on choices of parameters h and r = (r1, . . . , rn). To219

choose appropriate parameters, we can select the parameter that maximizes the total number of220

significant homology classes which is a generally adopted strategy in TDA [Chazal et al., 2014]. In221

our case, we can also use another heuristic but intuitive parameter selection method based on the222

diagram of the Rips complex filtration
{
R(X 0

n, r)
}
r≥0

. Recall that PHR
∗ (p̂h, r) is the persistent223

homology of the filtration
{
R(XLn , r)

}
L∈R. Since it is based on Rips complex with radius r,224

PHR
∗ (p̂h, r) can only capture the homology classes whose birth time is smaller than r and death time225

is greater than r in the Rips diagram. Therefore, once the Rips diagram reveals some seemingly226

significant homology classes whose lifetimes are longer than the others, we can choose appropriate h227

and r to make sure the base line Rips complex contain the seemingly significant homology groups.228
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Figure 1: One circle with additive noise example. (a) Data points uniformly distributed over a circle with
additive Gaussian noise. (b) Rips diagram. (c) Persistence diagram of KDE filtration on Rips complex.
(ri = h = 0.7, ∀i)
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Figure 2: One circle with background noise example. (a) Data points uniformly distributed over a circle, and
few outliers are added to the data set. (b) Rips diagram. (c) Persistence diagram of KDE filtration on Rips
complex. (ri = h = 0.65, ∀i)

6 Conclusions229

In this paper we have developed a new methodology for constructing asymptotic confidence sets230

for persistence diagrams of density level sets that are computationally less expensive than existing231

procedures.232

There are two main open questions that we will address in future work. First, while we successfully233

avoid evaluating the KDE on a grid of points in order to compute the persistent homology, we still234

need to calculate the values of the KDE on a grid to obtain the quantities ĉr in (9) and ẑα in (10).235

As computing the persistent homology is a much bigger computational bottleneck, overall we have236

significantly reduced the computation time. However, the computation time still depends on the237

ambient dimension. To address this issue we propose to approximate ĉr and ẑα using quantities that238

can be computed only evaluating the KDE on the sample points. In detail, we propose to replace ĉr239

by the similar quantity240

c̃r := max
i

sup
Xj∈B(Xi,ri),Xj 6=Xi

|p̂h(Xj)− p̂h(Xi)|.

Under mild conditions on the density, such as the (a, b) condition of Cuevas and Rodríguez-Casal241

[2004], it can be shown that c̃r and ĉr are close with high probability. Then a weaker form of the242

stability theorem will guarantee that our results remain valid with ĉr replaced by c̃r. Secondly, we243

can replace ẑα with the (1 − α) quantile of the the bootstrap replicates of the L∞ norms of the244

differences between p̂h and its bootstrap version p̂∗h, evaluated only at the sample points. In order to245

show that this quantity is close to ẑα with high probability we will also assume the (a, b) condition.246
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A Stability Theorem for Persistence module294

This section gives an introduction to the Stability Theorem on persistence module. We refer to Chazal295

et al. [2009] for more details.296

A persistence module is an algebraic abstraction of a persistent homology.297

Definition 11. [Chazal et al., 2009, Definition 2.1] A persistence module F is a family {FL}L∈R of298

Z2-vector spaces indexed by the elements of R, together with a family {fL′L : FL → FL′}L≤L′ of299

homomorphisms such that: ∀L ≤ L′ ≤ L′′, fL′′L = fL
′′

L′ ◦ fL
′

L and fLL = idFL .300

We say that F is tame if FL is a finite dimensional vector spaces for all L ∈ R.301

For two functions f, g : X → R satisfying ‖f − g‖∞ ≤ ε, their sublevel sets filtrations are nested302

as follows: ∀L ∈ R, XfL ⊂ XgL+ε ⊂ XfL+2ε. By letting FL = Hk(XfL) and GL = Hk(XgL),303

this induces the homomorphisms induced by the inclusions as FL → GL+ε → FL+2ε. Also, the304

canonical inclusions XfL ⊂ XfL′ and XgL ⊂ XgL′ for L ≤ L′ induces homomorphisms as FL → FL′305

and GL → GL′ . This homomorphisms relations can be extended to persistence modules as follows:306

Definition 12. Two persistence modules F and G are said to be strongly ε-interleaved if there exist307

two families of homomorphisms {φL : FL → GL+ε}L∈R and {ψL : GL → FL+ε}L∈R such that the308

following diagrams commute for all L ≤ L′:309

FL−ε //

φL−ε ""

FL′+ε FL+ε
// FL′+ε

GL // GL′
ψL′

;;

GL //

ψL
<<

GL′

ψL

::

FL // FL′
φL′

##

FL //

φL ""

FL′

φL′

$$
GL−ε //

ψL−ε
<<

GL′+ε GL+ε
// GL′+ε

(19)

If two persistence modules are strongly interleaved, then their bottleneck distance are close, which is310

the strong stability theorem.311

Theorem 8 (Strong Stability Theorem). [Chazal et al., 2009, Theorem 4.4] Let FR and GR be two312

tame persistence modules. If FR and GR are strongly interleaved, then dB(FR,GR) ≤ ε.313

B Proofs314

For bootstraping the `∞ distance ‖p̂h − p‖∞ as described in Section 4, Theorem 9 gives its validity.315

For its proof, see [Fasy et al., 2014, Theorem 12] and [Chazal et al., 2013, Theorem 2.1].316

Theorem 9.

P
(√

nhd‖p̂h − ph‖∞ ≤ ẑα
)

= 1− α+O

(√
1

n

)
.

Theorem 3. Suppose Assumption 1 holds for the density function p and Assumption 2 holds for the317

kernel function K. For any given h > 0 and r = (r1, . . . , rn) ∈ Rn with ri ≥ h, ∀i,318

dB (PH∗(p̂h, r),PH∗(ph)) ≤ ‖p̂h − ph‖∞ + ĉr,

where319

ĉr := max
i

sup
‖x−Xi‖≤ri

|p̂h(x)− p̂h(Xi)|.

320
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Proof of Theorem 3. From the strong stability theorem in Theorem 8, it is sufficient to show strong321

ε-interleaving conditions in (19) on the homology level. And since DL and D̂L are all sets, inclusion322

relations will carry over to the homology. Hence it is sufficient to show that enough to show that323

DL ⊂ D̂L−‖p̂h−ph‖∞−ĉr , and D̂L ⊂ DL−‖p̂h−ph‖∞−ĉr , for ∀L ∈ R.

For the first part, if L ≤ ‖p̂h − ph‖∞, then DL ⊂ D̂L−‖p̂h−ph‖∞−ĉr = Rd. If not, suppose x ∈ DL,324

which is equivalent to ph(x) ≥ L. Then325

p̂h(x) ≥ ph(x)− ‖p̂h − ph‖∞ ≥ L− ‖p̂h − ph‖∞ > 0.

Then from Assumption 2, supp(K) ⊂ B(0, 1), hence p̂h(x) > 0 implies that there exists some326

Xi ∈ Xn such that ‖x−Xi‖ ≤ h. Then from the condition h ≤ ri, ‖x−Xi‖ ≤ ri holds, and327

p̂h(Xi) ≥ p̂h(x)− ĉr ≥ L− ‖p̂h − ph‖∞ − ĉr.

Hence x ∈ D̂L−‖p̂h−ph‖∞−ĉr holds. i.e. DL ⊂ D̂L−‖p̂h−ph‖∞−ĉr holds.328

For the second part, if L ≤ ‖p̂h − ph‖∞, then D̂L ⊂ DL−‖p̂h−ph‖∞−ĉr = Rd. If not, suppose329

x ∈ D̂L. Then there exists Xi ∈ Xn such that ‖x−Xi‖ ≤ ri and p̂h(Xi) ≥ L. Then330

p̂h(x) ≥ p̂h(Xi)− ĉr ≥ L− ĉr
holds, and then331

ph(x) ≥ p̂h(x)− ‖p̂h − ph‖∞ ≥ L− ‖p̂h − ph‖∞ − ĉr.
Hence x ∈ DL−‖p̂h−ph‖∞−ĉr holds, i.e. D̂L ⊂ DL−‖p̂h−ph‖∞−ĉr holds.332

333

Theorem 4. The confidence set Ĉα in (11) is asymptotically valid and satisfies334

P
(
dB (PH∗(p̂h, r),PH∗(ph)) ≤ ẑα√

nhd
+ ĉr

)
≥ 1− α+O

(√
1

n

)
.

335

Proof of Theorem 4. Theorem 3 and Theorem 9 together imply as336

P
(
dB (PH∗(p̂h, r),PH∗(ph)) ≤ ẑα√

nhd
+ ĉr

)
≥ P

(
‖ph − p̂h‖∞ + ĉr ≤

ẑα√
nhd

+ ĉr

)
= P

(√
nhd‖ph − p̂h‖∞ ≤ ẑα

)
= 1− α+O

(√
1

n

)
.

337

Theorem 5. Suppose Assumption 1 holds for the density function p and Assumption 2 holds for the338

kernel function K. For any given h > 0 and r = (r1, . . . , rn) ∈ Rn with ri ≥ h, ∀i,339

dB

(
PHCech
∗ (p̂h, r),PH∗(ph)

)
≤ ‖p̂h − ph‖∞ + ĉr, (20)

and340

dB
(
PHR
∗ (p̂h, r),PH∗(ph)

)
≤ ‖p̂h − ph‖∞ + ĉ2r. (21)

341

Proof of Theorem 5. (Step 1)342

In this proof, write Č(r) for Čech(Xn, r) and write R(r) for R(Xn, r), for convenience.343

Let ε > 0 to be defined later, L ∈ R, and r = (r1, . . . , rn) ∈ Rn with r1, . . . , rn > 0. Triangulate344

X. With taking subdivision if necessary, assume that DL, DL−ε, sd
(
D̂L(r)

)
, sd

(
D̂L−ε(r)

)
,345
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B(Xi, ri), B(Xi, 2ri) are subcomplices. We first consider two simplicial maps from Nerve Theorem346

[Björner, 1995, Theorem 10.6]. We define a simplicial map φrL : sd
(
D̂L(r)

)
→ sd

(
ČL(r)

)
to347

be a barycentric map induced from σ 7→
{
Xi ∈ XLn : σ ∈ B(Xi, ri)

}
(where each B(Xi, ri) is348

understood as a simplicial subcomplex of X). We also define a simplicial map ψrL : sd
(
ČL(r)

)
→349

sd
(
D̂L(r)

)
to be a barycentric map induced from {Xn1

, . . . , Xnk} 7→
∑k
j=1 rjXnj∑k
j=1 rj

. Then the proof350

of [Björner, 1995, Theorem 10.6] implies that351

ψrL ◦ φrL ' idD̂L(r) and φrL ◦ ψrL ' idČL(r). (22)

Also, suppose r′ = λr for some λ ∈ [1,∞), and suppose L′ ≤ L. Then for each σ ∈ sd
(
D̂L(r)

)
,352

since vertices of σ can be ordered by inclusion relation, we can define its minimal vertex minσ. Now353

let ∆σ :=
{
Xi ∈ XL

′

n : minσ ∈ B(Xi, ri)
}

be understood as a simplex in ČL′(r′) (it is indeed354

a simplex since minσ ∈ B(Xi, ri) implies ‖Xi − Xj‖ ≤ ri + rj), then ‖φrL(σ)‖, ‖φr′L′(σ)‖ ⊂355

‖∆σ‖. Hence for any γ ∈ B∗
(
sd
(
D̂L(r)

))
, φrL(γ) and φr

′

L′(γ) are homotopic to each other in356

sd
(
ČL′(r

′)
)
, and hence in H∗

(
sd
(
ČL′(r

′)
))

,357

(φrL)∗[γ] = (φr
′

L′)∗[γ]. (23)

Also, ψrL satisfies that if σ ∈ sd
(
ČL(r)

)
∩ sd

(
ČL′(r

′)
)

with r′ = λr for some λ ∈ (0,∞), then358

ψrL(σ) = ψr
′

L′(σ). (24)

(Step 2)359

We prove (20), i.e. Stability Theorem with Čech complex. Let ε := ‖p̂h − ph‖∞ + ĉr. Our goal360

is to define simplicial maps ΦL : DL → sd
(
ČL−ε(r)

)
and ΨL : sd

(
ČL(r)

)
→ DL−ε so that361

(ΦL)∗ : H∗(DL) → H∗
(
ČL−ε(r)

)
and (ΨL)∗ : H∗

(
ČL(r)

)
→ H∗(DL−ε) are homomorphisms362

satisfying strong ε-interleaving conditions in (19). Then Strong Stability Theorem (Theorem 8)363

implies (20).364

Now we construct ΦL and ΨL. Let ıD→D̂L : DL → sd
(
D̂L−ε(r)

)
, ıD̂→DL : sd

(
D̂L(2r)

)
→ DL−ε365

be simplicial maps induced from the inclusion maps. And then we define ΦL := φrL−ε ◦ ıD→D̂L :366

DL → sd
(
ČL−ε(r)

)
and ΨL := ıD̂→DL ◦ ψrL : sd

(
ČL(r)

)
→ DL−ε. For L′ ∈ R with L′ ≤ L,367

let ıDL→L′ : DL → DL′ , ıCL→L′ : sd
(
ČL(r)

)
→ sd

(
ČL(r)

)
be simplicial maps induced from the368

inclusion maps.369

First we show that the diagram in (25) commutes,370

H∗(DL+ε) //

ΦL+ε &&

H∗(DL′−ε)

H∗
(
ČL(r)

)
// H∗

(
ČL′(r)

) ΨL′

77
(25)

i.e. compare ΨL′ ◦ ıCL→L′ ◦ΦL+ε : DL+ε → DL′−ε to inclusion map ıDL+ε→L′−ε : DL+ε → DL′−ε.371

For γ ∈ B∗ (DL+ε), note that ΦL+ε(γ) = φrL(γ), so ΨL′ ◦ ıCL→L′ ◦ΦL+ε(γ) = ψrL′ ◦ φrL(γ). Then372

since φrL(γ) ∈ B∗
(
sd
(
ČL(r)

))
⊂ B∗

(
sd
(
ČL′(r)

))
, (24) implies373

ψrL′ ◦ φrL(γ) = ψrL ◦ φrL(γ).

Then from (22),374

(ψrL ◦ φrL)∗ [γ] = idD̂L(r)[γ] = [γ]

in H∗
(
D̂L(r)

)
. Since D̂L(r) ⊂ DL′−ε,375 (

ΨL′ ◦ ıCL→L′ ◦ ΦL+ε

)
∗ [γ] = (ψrL ◦ φrL)∗ [γ] = [γ] =

(
ıDL+ε→L′−ε

)
∗ [γ]

12



in H∗(DL′−ε) as well.376

Second, we show that the diagram in (26) commutes,377

H∗ (DL−ε) // H∗ (DL′−ε)

H∗
(
ČL(r)

)
//

ΨL

77

H∗
(
ČL′(r)

) ΨL′

77
(26)

i.e. compare ΨL′ ◦ ıCL→L′ : sd(ČL(r)) → DL′−ε to ıDL−ε→L′−ε ◦ ΨL : sd(ČL(r)) → DL′−ε. For378

γ ∈ B∗ (sd(RL(r))), note that ΨL′ ◦ ıCL→L′(γ) = ψrL′(γ) and ıDL−ε→L′−ε ◦ΨL(γ) = ψrL(γ). Then379

since γ ∈ B∗
(
sd(ČL(r))

)
⊂ B∗

(
sd(ČL′(r))

)
, (24) implies380

ΨL′ ◦ ıCL→L′(γ) = ψrL′(γ) = ψrL(γ) = ıDL−ε→L′−ε ◦ΨL(γ),

hence
(
ΨL′ ◦ ıCL→L′

)
∗ [γ] =

(
ıDL−ε→L′−ε ◦ΨL

)
∗ [γ] in H∗(DL′−ε).381

Third, we show that the diagram in (27) commutes,382

H∗ (DL) // H∗ (DL′)

ΦL′

''
H∗
(
ČL+ε(r)

)
//

ΨL+ε

77

H∗
(
ČL′−ε(r)

)
(27)

i.e. compare ΦL′ ◦ ıDL→L′ ◦ΨL+ε : sd
(
ČL+ε(r)

)
→ sd

(
ČL′−ε(r)

)
to inclusion map ıCL+ε→L′−ε :383

sd
(
ČL+ε(r)

)
→ sd

(
ČL′−ε(r)

)
. For γ ∈ B∗

(
sd
(
ČL+ε(r)

))
, note that ΨL+ε(γ) = ψrL+ε(γ),384

so ΦL′ ◦ ıDL→L′ ◦ ΨL+ε(γ) = φrL′−ε ◦ ψrL+ε(γ). Then since γ ∈ B∗
(
sd
(
ČL+ε(r)

))
⊂385

B∗
(
sd
(
ČL′−ε(r)

))
, (24) implies386

φrL′−ε ◦ ψrL+ε(γ) = φrL′−ε ◦ ψrL′−ε(γ).

Then from (22),387 (
ΦL′ ◦ ıDL→L′ ◦ΨL+ε

)
∗ [γ] =

(
φrL′−ε ◦ ψrL′−ε

)
∗ [γ] = idsd(ČL′−ε(r))

[γ] = [γ] =
(
ıCL+ε→L′−ε

)
∗ [γ]

in H∗
(
sd
(
ČL′−ε(r)

)) ∼= H∗
(
ČL′−ε(r)

)
.388

Fourth, we show that the diagram in (28) commutes,389

H∗ (DL) //

ΦL ''

H∗ (DL′)

ΦL′

((
H∗
(
ČL−ε(r)

)
// H∗

(
ČL′−ε(r)

)
(28)

i.e. compare ΦL′ ◦ ıDL→L′ : DL → sd(ČL′−ε(r)) to ıCL−ε→L′−ε ◦ ΦL : DL → sd(ČL′−ε(r)). For390

γ ∈ B∗ (DL), note that ΦL′ ◦ ıDL→L′(γ) = φrL′−ε(γ) and ıCL−ε→L′−ε ◦ ΦL(γ) = φrL−ε(γ). Then391

from (23),392 (
ΦL′ ◦ ıDL→L′

)
∗ [γ] =

(
φrL′−ε

)
∗ [γ] =

(
φrL−ε

)
∗ [γ] =

(
ıCL−ε→L′−ε ◦ ΦL

)
∗ [γ]

in H∗
(
sd
(
ČL′−ε(r)

)) ∼= H∗
(
ČL′−ε(r)

)
.393

(Step 3)394

We prove (21), i.e. Stability Theorem with Vietoris-Rips complex. Let ε := ‖p̂h − ph‖∞ + ĉ2r. Our395

goal is to define simplicial maps ΦL : DL → sd (RL−ε(r)) and ΨL : sd (RL(r))→ DL−ε so that396

(ΦL)∗ : H∗(DL) → H∗ (RL−ε(r)) and (ΨL)∗ : H∗ (RL(r)) → H∗(DL−ε) are homomorphisms397

satisfying strong ε-interleaving conditions in (19). Then Strong Stability Theorem (Theorem 8)398

implies (21).399
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Now we construct ΦL and ΨL. Let ıD→D̂L : DL → sd
(
D̂L−ε(r)

)
, ıC→RL : sd

(
ČL(r)

)
→400

sd (RL(r)), ıR→CL : sd (RL) → sd
(
ČL(2r)

)
, ıD̂→DL : sd

(
D̂L(2r)

)
→ DL−ε be simplicial maps401

induced from the inclusion maps. And then we define ΦL := ıC→RL−ε ◦ φrL−ε ◦ ıD→D̂L : DL →402

sd (RL−ε(r)) and ΨL := ıD̂→DL ◦ ψ2r
L ◦ ıR→CL : sd (RL(r)) → DL−ε. For L′ ∈ R with L′ ≤ L,403

let ıDL→L′ : DL → DL′ , ıRL→L′ : sd (RL(r)) → sd (RL(r)) be simplicial maps induced from the404

inclusion maps.405

First we show that the diagram in (29) commutes,406

H∗(DL+ε) //

ΦL+ε ''

H∗(DL′−ε)

H∗ (RL(r)) // H∗ (RL′(r))

ΨL′

77
(29)

i.e. compare ΨL′ ◦ ıRL→L′ ◦ΦL+ε : DL+ε → DL′−ε to inclusion map ıDL+ε→L′−ε : DL+ε → DL′−ε.407

For γ ∈ B∗ (DL+ε), note that ΦL+ε(γ) = φrL(γ), so ΨL′ ◦ ıRL→L′ ◦ΦL+ε(γ) = ψ2r
L′ ◦ φrL(γ). Then408

since φrL(γ) ∈ B∗
(
sd
(
ČL(r)

))
⊂ B∗

(
sd
(
ČL′(2r)

))
, (24) implies409

ψ2r
L′ ◦ φrL(γ) = ψrL ◦ φrL(γ).

Then from (22),410

(ψrL ◦ φrL)∗ [γ] = idD̂L(r)[γ] = [γ]

in H∗
(
D̂L(r)

)
. Since D̂L(r) ⊂ DL′−ε,411 (

ΨL′ ◦ ıRL→L′ ◦ ΦL+ε

)
∗ [γ] = (ψrL ◦ φrL)∗ [γ] = [γ] =

(
ıDL+ε→L′−ε

)
∗ [γ]

in H∗(DL′−ε) as well.412

Second, we show that the diagram in (30) commutes,413

H∗ (DL−ε) // H∗ (DL′−ε)

H∗ (RL(r)) //

ΨL

77

H∗ (RL′(r))

ΨL′

77
(30)

i.e. compare ΨL′ ◦ ıRL→L′ : sd(RL(r)) → DL′−ε to ıDL−ε→L′−ε ◦ ΨL : sd(RL(r)) → DL′−ε. For414

γ ∈ B∗ (sd(RL(r))), note that ΨL′ ◦ ıRL→L′(γ) = ψ2r
L′(γ) and ıDL−ε→L′−ε ◦ΨL(γ) = ψ2r

L (γ). Then415

since γ ∈ B∗
(
sd(ČL(2r))

)
⊂ B∗

(
sd(ČL′(2r))

)
, (24) implies416

ΨL′ ◦ ıRL→L′(γ) = ψ2r
L′(γ) = ψ2r

L (γ) = ıDL−ε→L′−ε ◦ΨL(γ),

hence
(
ΨL′ ◦ ıRL→L′

)
∗ [γ] =

(
ıDL−ε→L′−ε ◦ΨL

)
∗ [γ] in H∗(DL′−ε).417

Third, we show that the diagram in (31) commutes,418

H∗ (DL) // H∗ (DL′)

ΦL′

''
H∗ (RL+ε(r)) //

ΨL+ε

77

H∗ (RL′−ε(r))

(31)

i.e. compare ΦL′ ◦ ıDL→L′ ◦ΨL+ε : sd (RL+ε(r)) → sd (RL′−ε(r)) to inclusion map ıRL+ε→L′−ε :419

sd (RL+ε(r)) → sd (RL′−ε(r)). For γ ∈ B∗ (sd (RL+ε(r))), note that ΨL+ε(γ) = ψ2r
L+ε(γ),420

so ΦL′ ◦ ıDL→L′ ◦ ΨL+ε(γ) = φrL′−ε ◦ ψ2r
L+ε(γ). Then since γ ∈ B∗

(
sd
(
ČL+ε(2r)

))
⊂421

B∗
(
sd
(
ČL′−ε(r)

))
with subdivisions if necessary, (24) implies422

φrL′−ε ◦ ψ2r
L+ε(γ) = φrL′−ε ◦ ψrL′−ε(γ).
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Then from (22),423 (
φrL′−ε ◦ ψrL′−ε

)
∗ [γ] = idsd(ČL′−ε(r))

[γ] = [γ]

in H∗
(
sd
(
ČL′−ε(r)

))
. Since sd

(
ČL′−ε(r)

)
⊂ sd (RL′−ε(r)),424 (

ΦL′ ◦ ıDL→L′ ◦ΨL+ε

)
∗ [γ] =

(
φrL′−ε ◦ ψrL′−ε

)
∗ [γ] = [γ] =

(
ıRL+ε→L′−ε

)
∗ [γ]

in H∗ (sd (RL′−ε(r))) ∼= H∗ (RL′−ε(r)) as well.425

Fourth, we show that the diagram in (32) commutes,426

H∗ (DL) //

ΦL ''

H∗ (DL′)

ΦL′

((
H∗ (RL−ε(r)) // H∗ (RL′−ε(r))

(32)

i.e. compare ΦL′ ◦ ıDL→L′ : DL → sd(RL′−ε(r)) to ıRL−ε→L′−ε ◦ ΦL : DL → sd(RL′−ε(r)). For427

γ ∈ B∗ (DL), note that ΦL′ ◦ ıDL→L′(γ) = φrL′−ε(γ) and ıRL−ε→L′−ε ◦ ΦL(γ) = φrL−ε(γ). Then428

from (23),429 (
ΦL′ ◦ ıDL→L′

)
∗ [γ] =

(
φrL′−ε

)
∗ [γ] =

(
φrL−ε

)
∗ [γ] =

(
ıRL−ε→L′−ε ◦ ΦL

)
∗ [γ]

in H∗
(
sd
(
ČL′−ε(r)

))
. Since ČL′−ε(r) ⊂ RL′−ε(r), the same relation holds in H∗ (sd (RL′−ε(r)))430

as well.431

Theorem 6. The confidence set ĈCechα in (15) is asymptotically valid and satisfies432

P
(
dB

(
PHCech
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉr

)
≥ 1− α+O

(√
1

n

)
.

Similarly, the confidence set ĈRipsα in (16) is asymptotically valid and satisfies433

P
(
dB
(
PHR
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉ2r

)
≥ 1− α+O

(√
1

n

)
.

434

Proof of Theorem 6. Theorem 5 and Theorem 9 together imply as435

P
(
dB

(
PHCech
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉr

)
≥ P

(
‖ph − p̂h‖∞ + ĉr ≤

ẑα√
nhd

+ ĉr

)
= P

(√
nhd‖ph − p̂h‖∞ ≤ ẑα

)
= 1− α+O

(√
1

n

)
,

and436

P
(
dB
(
PHR
∗ (p̂h, r),PH∗(ph)

)
≤ ẑα√

nhd
+ ĉ2r

)
≥ P

(
‖ph − p̂h‖∞ + ĉ2r ≤

ẑα√
nhd

+ ĉ2r

)
= P

(√
nhd‖ph − p̂h‖∞ ≤ ẑα

)
= 1− α+O

(√
1

n

)
,

437
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